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The plane and axisymmetric hypersonic flow past blunted bodies is investigated 
as an inverse problem (shock shape given). The fluid may behave as a real gas in 
local thermodynamic equilibrium. Viscosity and heat conduction are neglected. 
An analytical solution uniformly valid in the whole flow field (from the stagna- 
tion region up to large distances from the body nose) is given. The solution is 
based on two main assumptions: (i) the density ratio E across the shock is very 
small, (ii) the pressure at a point P of the disturbed flow field is not very small 
compared with the pressure immediately behind the shock in the intersection 
point of the shock surface with its normal through P. Terms O ( E )  are neglected 
in comparison with 1, but it is not necessary for the shock layer to be thin. The 
change of velocity along streamlines is taken into account. In  order to calculate 
the flow quantities one has to evaluate only two integrals (equations (49) and 
(53)  together with the boundary values (5) and (10)). The application of the solu- 
tion is illustrated and the accuracy is tested in some examples. 

1. Introduction 
Plane and axisymmetric hypersonic flows past blunt bodies have been in- 

vestigated already by several authors. Two different problems have been 
examined. In  the direct problem the shape of the body is given. In  the inverse 
problem, however, the shape of the shock wave is given, and it is required to find 
the corresponding flow field and the shape of the body producing the shock. 

The subsonic and transonic region of the flow field has been considered most 
extensively. This region can be treated separately, because a change of the body 
shape in the supersonic domain downstream of the limiting characteristic does 
not influence the flow in the subsonic region. For the following investigations the 
papers by Chester (1956) and Freeman (1956) are particularly important. These 
authors expanded the differential equations governing the flow of a pel feet 
gas in powers of (y  - l ) / ( y  + 1) and M z 2 ,  where y is the ratio of specific heats and 
M, is the Mach number of the free stream. The first approximation for the pres- 
sure is identical with a formula given by Busemann (1933). The terms ‘Newton- 
Busemann theory ’ or ‘Newtonian theory plus centrifugal correction ’ are used 
for this kind of solution. The theory of Chester and Freeman gives exact solu- 
tions for y = 1 and M, = 00. However, for all common gases y is larger than 1. 
In  this case the results of Chester and Freeman differ considerably from more 
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accurate numerical or from experimental values, even for small values of the 
parameter (y  - l)/(y + 1). Van Dyke (1958) pointed out that the series converge- 
if at  all-very slowly. It may be mentioned that Cheng & Gaitatzes (1966) 
added a correction term to the first approximation of Chester and Freeman on the 
strength of qualitative considerations. Thus Cheng Bt Gaitatzes obtained more 
accurate results in the stagnation region. 

Another difficulty arises a t  some distance downstream of the stagnation point. 
The theory of Chester and Freeman is not valid in regions where the pressure is a 
small fraction of its value at  the nose. Freeman (1956) noticed a singularity, 
which appears in his solution for certain body shapes. (On a sphere, for instance, 
this singularity arises at a central half angle of SO0.) Attempts to continue the 
solution downstream of the singular point did not yield satisfactory results (see 
the discussion by Hayes & Probstein 1966, pp. 366-79). 

Also the numerical methods, which have been developed for blunt bodies, are 
not useful in the supersonic region, but they can be continued by numerical 
methods of characteristics. We mention Inouye & Lomax (1962) and Honda 
(1965, 1966) as illustrative references for applications and results. 

In  a good number of papers the flow far downstream of the blunt nose of a 
slender body has been considered. The blast-wave analogy and the similarity 
solutions for power-law bodies have to be mentioned here. These theories fail in 
the subsonic region, where the shock slope is not small compared with 1. More- 
over, there is another limitation of the applicability. Similarity solutions and 
blast-wave analogy are not valid within a layer near the body surface. This so- 
called entropy layer is characterized by large entropy and small density values 
and can occupy a considerable part of the space between shock wave and body 
surface. Sychev (1960) considered a paraboloidal shock shape and calculated 
numerically the influence of the entropy layer on the flow far downstream of the 
blunt nose of a slender body. Yakura (1962) used the method of matched asymp- 
totic expansions to investigate the same problem. An ‘outer ’ expansion describes 
the flow outside of the entropy layer, an ‘inner ’ expansion is valid in the entropy 
layer and the two expansions are matched to give a single solution. 

The methods, mentioned so far, are useful only in certain local regions, either 
in the subsonic and transonic region only, or in the supersonic region only, or 
only at  large distances from the stagnation point. By ‘joining’ the individual 
solutions numerical difficulties arise, and from a theoretical point of view this 
procedure is not very satisfactory. An interesting attempt to find a solution valid 
in the whole flow field has been made by Maslen (1964). Maslen assumed, like 
Chester and Freeman, that the density downstream of the shock is much larger 
than in the free stream. But he further assumed that the velocity in an arbitrary 
point P of the shock layer is equal to the velocity immediately behind the shock 
wave in the intersection point of the shock surface with its normal through P. 
However, as Maslen himself noted, his method does not correspond to a rational 
theory and can be justified only by a comparison with other methods or experi- 
mental results. Moreover, in the stagnation region the assumption for the velocity 
is not even approximately satisfied. 

Anotherway of describing the flow uniformly has been pointedout by Schneider 



A uniformly valid solution for the hypersonicJlow past blunted bodies 399 

(1966). Whereas in the earlier paper an integral form of the energy equation has 
been used, in the present method we shall satisfy the energy equation correctly 
on each streamline. The aim of the following investigation of the hypersonic 
blunt-body problem is to find a solution, which is uniformly valid in the whole 
$ow $eld (from the stagnation region up to large distances from the body nose). 
Furthermore, it will be easily seen that the solution can be applied to pointed 
bodies too. 

2. Notation and fundamental equations 
Consider the plane or axisymmetric hypersonic flow past a body. The shape of 

the bow shock wave is given, and it is required to find the corresponding flow 
field and the shape of the body producing the shock. Let the flow be inviscid and 
without heat conduction, and let the gas be in local thermodynamic equilibrium. 
The gas may have arbitrary thermal and caloric properties. 

FIGURE 1. Co-ordinate systems and notation. 

We introduce x and r as Cartesian co-ordinates for plane flow, and as cylindrical 
co-ordinates for axisymmetric flow. The z-axis is parallel to the direction of the 
free stream. It is advantageous to use additionally a shock-oriented co-ordinate 
system (3, y) of boundary-layer type (figure 1); 5 is the distance along the shock 
surface in the plane formed by the shock normal and the direction of the uniform 
stream, and y is the distance normal to the shock surface. From figure 1 one can 
draw the relations 

z = s+ ysin8, (1 a)  

r = 6’-ycos6, ( 1 b )  

i? is the shock inclination angle in the point N(5,P). Since the functions 2(x) and 
P(x) are known for a given shock shape, the equations (1 a) and (1 b )  may be used 
to calculate the co-ordinates z and r of a point P from its co-ordinates x and y .  
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The components of the velocity in the 2- and y-directions are denoted by u and v 
respectively; p is the density, p the pressure, i the specific enthalpy and s the 
specific entropy. The curvature of the shock contour in the point N is 2, de- 
fined as positive if the centre of curvature lies at  positive y (2 = d cos a/&). 
The continuity equation can be written 

where j = 0 for plane flow, and j = 1 for axisymmetric flow. To satisfy the con- 
tinuity equation ( 2 ) ,  we introduce a stream function $ by 

With $ and x = x as independent variables, the equations of energy, entropy 
and momentum are: 

u2+v2+2 i  = u2,+v%+2ib = const; (4) 

as 
ax - = 0, or s =s*($); 

au av l a p  
ax ax p a x  

u- +v-+-- = 0 ;  

( 1 - 2 y ) ( l - j ~ c o s 6 ) ~ ~ ~ = K u + - .  .. av 
ax (7) 

Note that partial derivatives with respect to x are taken with y constant, but 
derivatives with respect to X are taken with $ constant. From equations (3  a)  and 
(3  b) we obtain the transformation equations 

aY--- 1 
a$ - (1 -j(y/P) coSa}Ppu‘ 

Theequations (6), (7) , (8a) ,  (8b)and(4)or (5)provideasetoffiveequationsforthe 
five dependent variables (u, v, y and two thermodynamic quantities). As bound- 
ary conditions the flow quantities immediately behind the shock are given. It 
will be convenient to use two different notations for quantities behind the shock. 
Let two points N and S on the shock wave correspond to each point P of the dis- 
turbed flow field (figure 1). N is the point where the shock-normal (53 = const) 
through P intersects the shock surface and S is the point where the streamline 
(@ = const) through P crosses the shock wave. The flow quantities immediately 
behind the shock in the point N are denoted by the superscript A ,  and in the point S 
by the subscript *. We have already used this convention in equation (5). The 
analogous notation is used for the shock angle IT. 
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Velocity, density, pressure and specific enthalpy of the uniform stream are 
denoted by W,, pa, pa and i, respectively. In  terms of the density ratio across 
the shock, defined by 

2 = PaIA €* = PmlP*, (9) 

I 
the flow quantities immediately behind the shock are 

a = w, cos 9, 
0 = Wm2 sin 9, 
j3 =p,+paW5(1-2)sin2a, 

f = irn+$W2,(1-22)sin25. 

Replacing 9 and 2 by CT* and e*, respectively, we get analogous equations for 

The stream function $, defined by (3), contains a constant of integration. This 
constant is chosen such that $ = 0 is the body stream line. Then $ represents the 
mass flow between the streamline @ = const and the body surface, per unit depth 
for plane flows, and per unit azimuthal angle (in radians) for axisymmetric flows. 
Therefore the value 8 of the stream function at the shock in the point N (figure 
1) is 

a*, v+, P* and i*. 

on the other hand, the co-ordinate r* of the point S is connected with @ by the 
relation 

3. Assumptions and approximations 
For many real gases the density immediately behind a strong shock is much 

larger than in front of the shock (see, for instance, Lighthill 1957 or Hayes & 
Probstein 1966). Therefore we assume that 

Z < 1 and e* = O(2). (13) 

(14) 

As a second important assumption we shall use the relation 

j3/p = O(1) (on x: = const, y > 0) .  

As is usual in fluid mechanics, the symbol f(z) = O(g(x))  means throughout 
this paper that If(x:)I is not very large in comparison with 1g(x)1. Therefore 
equation (14) states that the pressure in a point P of the disturbed flow field 
is not very small compared with the pressure immediately behind the shock in 
the intersection point of the shock surface with its normal through P. It should 
be noted that an analogous relation for p * / p  is not assumed. Thus the pressure 
ratio p * / p  may be very large, so that a strong expansion on a streamline is per- 
mitted. (Strong expansions on streamlines occur in flows past slender bodies 
with nose blunting.) The assumption (14) may be applied to many body shapes 
of practical interest, and it may be applied also far downstream of the body nose. 

26 Fluid Mach. 31 
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(For blunted flat plates and blunted cylinders, as examples, @ / p  is about 2 
according to the blast-wave solutions for the flow far downstream of the nose.) 

We now consider the momentum equation (7). With the assumptions (13) and 
(14) we shall obtain (32). Equations like (32) are used in the theory of thin shock 
layers, but we shall show that the equation is valid more generally. Integrating 
formally equation (7) with the boundary condition p = @ at $ = $ we obtain 

+'i(@-p)[1+O(J1)] = B (15a) 

where 

Since y is a decreasing monotonic function of @, J1 is of order 

where the 'effective layer thickness ' Sefi is defined by 

Its physical meaning will be explained in the next section. 
In  order to calculate O(6eff) we need estimations of l/u and 1/p. Since the en- 

tropy increases with increasing shock angle v,  we have ŝ  = O(s,). With (14) i t  
follows that .i = O ( i )  and from the energy equation (4) we conclude that 

u = o(q. (18) 

On the other hand, l/u is O(l/w,*), because the velocity increases along stream- 
lines with falling pressure. Noticing (10) we see that l/u = O(l/a), except per- 
haps the region 0 < @ < $, where coscr, can be very small compared with C O S ~ .  

To obtain approximations valid in this region, too, we write 

where the subscript b denotes the value on the body surface. In order to find an 
analogous equation for p,  we replace i and p in 

by means of (4) and (7). As the thermodynamic functions (aplap), and (aplai), 
for a gas do not change their orders of magnitude if p and i keep their orders of 
magnitude, and since v is of the order of u at most, except in the stagnation 
region, it follows from (20) with the aid of (15 a)  that the order of magnitude of 
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+/a+ does not depend on IjT, except perhaps the region near the body surface, 
where u can be much smaller than &. Thus we have 

As is well known, p is almost constant in the region near the stagnation point 
(see Lighthill 1957; Hayes & Probstein 1966). One recognizes immediately that 
(21 )  is valid in the stagnation region too. 

With the help of (19) ,  (21 )  and ( l l ) ,  equation ( 8 b )  gives 

and it follows from (17 )  that 

where 

(23 )  

(24 )  

The function P is o( 1 )  for any u b l a  and pb/@ lying in the physically possible range 
u b / &  = O( 1 )  and p b / @  = O( l ) ,  where ubla and pb/@ cannot be very small simul- 
taneously, because an expansion into vacuum leads to very large velocities. 
Equation (23 )  then becomes 

(25 )  
cos a 

h'efr- = O(2) < 1. 

The physical meaning of this simple relation will be explained in the next 
chapter. 

We return now to the integrals J1 and J,. Assuming av/aiZ to be continuous in 
the closed interval [IjT, $1, integration and differentiation may be exchanged in 
(15 c )  and the following estimate is obtained with (8 a )  and ( 1  8 )  : 

We note that continuity of av/aZ in the interval [$, $1 requires smooth stream- 
lines in [+, $]; if the results should be correct up to the body surface, also the body 
streamline has to be smooth. After substitution from (25 ) ,  dt/dZ appears in equa- 
tion (26) .  From t = 2(pw,  i,, W, sin G) 

a2 d(W, sin S) d$ dB 
d Z -  a(W,sinG) d6 dz 

- = O(B2 cot a). we obtain _ -  

Equations ( l l ) ,  (26 )  and ( 2 7 )  then combine to give 

(27) 

26-2 
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With the help of (15a) and (18) it  may be concluded from the assumption (14) 
that 

- O(1). 
h3P 

sin2 8 cos B 
_____ - 

Thus equation (28) becomes 
J2 = pm W: Pfsin2BO(2) 

(29) 

and equation (16) with (25) may be rewritten 

J1 = O ( i ) .  (31) 

The relations (30) and (31) can now be substituted into equation (17). Noticing 
the equations (lo),  (13) and (14) and neglecting terms O(2) in comparison with 1, 
we obtain 

This simplified form of the momentum equation (7) will serve as basis for solving 
the problem. Equations analogous t o  (32) have been used already in the theory of 
thin shock layers. However, we have rederived this basic equation under assump- 
tions which do not restrict the range of applicability to thin shock layers. We 
shall discuss this point in the next chapter. 

4. Remarks upon the physical meaning of the approximations 
A comparison of (32) with the exact momentum equation (7) shows that the 

following approximations are valid within the assumptions used. (i) The pressure 
gradient normal to the shock wave is approximately equal to the pressure gra- 
dient normal to the streamlines. This pressure gradient is due to centrifugal 
forces. (ii) In  order to calculate the pressure-but only for the pressure-the 
streamline curvature may be taken equal to the shock curvature. 

The mass flow (per unit depth for plane flow, and per unit azimuthal angle for 
axisymmetric flow) between the streamline q+ and a neighbouring streamline 
$+d$ is d$. Since y is the distance from the shock wave, the quantity Seff 
defined by (1 7)  may be interpreted as distance of the ' mass flow centre ' from the 
shock surface. Consequently, the number (S,rf/P) cos a provides a measure of the 
concentration of mass flow at the shock. Thus equation (25), which played an 
important role in the previous chapter, may be interpreted as follows: almost the 
whole mass flows very closely to the shock; or in other words, most of the stream- 
lines drawn for constant differences of mass flow lie near the shock surface. But 
not all streamlines must lie near the shock. Especially the distance of the body 
surface from the shock need not to be small in comparison with Plcosa. There- 
fore it is not necessary to have a thin shock layer in order to apply equation (32) 
and the solution given in the next chapter. This fact is essential for the applica- 
bility of the theory to blunted slender bodies. 

In  equation (32) not only the pressure p but also the velocity component u is 
unknown. The theory of thin shock layers, as developed for blunt bodies by 
Chester (1956) and Freeman (1956), yields within the first approximation, that u 
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is constant on streamlines: u = u*($). This result, however, is not valid in 
regions where the pressure is a small fraction of its value at the nose (see Chester 
1956 and Freeman 1956). Therefore we shall follow another approach. 

5. A uniformly valid solution 
We proceed from the momentum equation (6), which we may rewrite 

The ratio of the velocity components can be estimated from equation (10) and 
figure 1:  

Combining (8a )  and (22) we obtain 

and with (10) and (14) we have 

(34) 

(35) 

Downstream of the shock the entropy does not change on streamlines, so that 
we may use the effective isentropic exponent 

which is not smaller than 1 for any known gas. Thus on a streamline the relative 
pressure change is not smaller than the relative density change, so that we have 
for 

For dp > 0, on the other hand, we note that p/pm W z  cannot be very large. Thus 
we may write for both d p  < 0 and d p  > 0 

= W“,(E*). 
P 

(39) 

This equation is also valid on the body streamline, and equation (36) becomes 

Because of the assumption (13) it follows that 

vb 

ub 
- = O(k) 

for all values of Pb/ph coming into question (pb/p^ = O( 1)). If the stagnation region, 
defined by tan2t3 9 1 is excluded temporarily from the consideration, the 
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equations (34) and (41) show that f 1 2  may be neglected in comparison with u2 
within the momentum equation (33). Integrating (33) and considering the isen- 
tropy on streamline, we obtain 

u2-u:+2Slnp h P *  p) P s=5* d(lnp) = 0. (42) 

For the first term in this equation, we have the relation 

w: = O(u2) (43) 

if the stagnation region and the region characterized by u < 6 are excluded 
temporarily again (see the discussion subsequent to (18)). The magnitude of the 
third term in (42) may be evaluated from (39) as 

This term, though E* < 1 has been assumed, is not to be neglected in equation 
(42), if it is required to find a uniformly valid solution. For, the gas may expand 
very much on streamlines coming out from the stagnation region, so that 
In (p*/p) can become very large. (Note that with neglecting the integral term, the 
solution u = u*($) derived by Chester and Freeman is obtained immediately.) 
Since p is still unknown, the question arises how u may be calculated from (42) 
without neglecting the integral term. We can overcome this crucial difficulty as 
follows. 

The integral in (42) is divided into two parts to give 

The first integration extends from the lower limit lnp, to the upper limit In$. 
These limits are given by the boundary conditions at  the shock. The second inte- 
gration extends from In fj to lnp, which is unknown. But the assumption (14) 
with equation (32) allows us to write 

This equation together with (43) shows that we can neglect the second integral 
in (45) (also for strong expansions on streamlines). Then (45) becomes 

or (with d i  = dp/p fords = 0 )  

(47) 

urp, = u: + 2[i* - i(fj, s*)] + . . ., (48) 

where i = i(p, s )  is an equation of state of the gas. The subscript ( p )  denotes that 
this approximation is used only to calculate the pressure p .  The reasons for this 
will appear later in connexion with equation (51). Now (48) may be substituted 
into ( 3 2 ) .  We obtain the result 

g ? J  
p = j3 - (74; + 2[i* - i($, s*)]))dq?. (49) 
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On the right-hand side of this equation there are only quantities given by the 
boundary conditions at the shock or by the state equation of the gas. 

Now we consider the regions we had excluded in deriving (49) .  The part of the 
flow field where u < $2 yields a negligible contribution to the integral in (32)  
or (49) ,  since here the integrand is very small and, furthermore, this region OCCU- 

pies only a small part of the whole integration interval. In the stagnation region, 
however, the density is approximately constant (see Lighthill 1957; Whitham 
1957; Hayes & Probstein 1966), and from Bernoulli's equation it follows that 

p !  = O(s*).  
@ 

On the other hand, we obtain from (49)  for $+ 0 that p = j3 in the stagnation 
point. We recognize that the terms neglected in (49)  are O(2) within the whole 
flow field including the stagnation region. 

With s = s*($) and p evaluated from (49) ,  the thermodynamic state is now 
known in the streamline co-ordinate system (5,$). In  order to determine the 
location of a point in space, we need the distance y from the shock surface as a 
function of 5 and $. After separating the variables y and $ in (8 b) ,  we may solve 
this equation without any approximation. The solution is 

The density p can be calculated from the state equation p = p ( p ,  s). For the velo- 
city component u the approximation (48) has already been given, but we do not 
use this equation here, because it is not valid in the stagnation region. Although 
it has been shown just now that equation (49)  containing (48)  is, nevertheless, 
consistent within the stagnation region, analogous conclusions cannot be drawn 
for (51) .  But since p(Z, $) is already known, we can proceed now directly from 
the energy equation ( 4 ) .  As has been shown above, v2 can be neglected in compari- 
son with u2 outside of the stagnation region. Hayes & Probstein (1966, pp. 
235-7 and 247-9) pointed out that this leads to errors, which are O(2) within the 
stagnation region too. Thus from the energy equation ( 4 )  it  follows that 

2L2 = .; + 2[i* - i (p ,  s* )] + . . . , (52)  

and the integral in (51)  becomes 

Solving the left-hand side of (51)  with respect to y ,  one has to distinguish between 
plane ( j  = 0) and axisymmetric ( j  = 1) flows. This gives 

for j =  y :  O =  Y ;  I 
for j = y :  1 = cos - [ I -  6 ( 1 -  2yc0sa)tl 8 2  -1 .3 (53 b)  

With ( 5 3 ~ )  and (53b)  the solution (49 )  depending on 3 and $ is obtained in the 
co-ordinate system z, y. Finally, the equations ( 1  a )  and ( 1  b )  give the solution 
in the convenient co-ordinates z and r. 
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On the body surface we have @ = 0. Therefore we obtain the pressure p b  on 
the body surface and the shock layer thickness S by replacing the lower limit in 
(49) and (53a) by zero. Hence we have 

I @ = 0:  p = p b ( X ) ;  

y = S(X). (54) 

Perfect gas 

For a perfect gas with constant specific heats the density ratio across the shock 
is given by the well-known relation 

where y is the ratio of specific heats. By use of the shock conditions ( l o ) ,  together 
with (55), the equations (49) and (53a)  become 

(57) 
1 G  e*($ sin2c*/p sin2i?)l/Yd@ 

(y  - 1)M2, 

y = -  
(cos2c*+[ 2 +sinZr*1[1-( p sin25 W-W 11 4' 

@ sin2 c* 

These equations show very clearly the difference existing between the present 
method and the Newtonian theory (with centrifugal correction). By putting 
Ma = 03 and y = 1 in (56) we obtain exactly the Busemann formula (in which 
velocity changes on streamlines are neglected). This connexion is consistent with 
the fact, that for = 1 an isentropic expansion is isothermal, and the velocity 
remains constant according to the energy equation. If, however, y is larger than 
1,sayy = (1 +e) / ( l  -€),where€ > 0,anessentialchangeofthevelocitymagnitude 
can result even for arbitrarily small 6, provided that the pressure change is suffi- 
ciently large. This is taken into account in (56) and (57) by the terms, which ap- 
pear in the radicands additionally to cos2c,. The importance of these terms for 
expansions in powers of (y  - l)/(y + 1) has been explained by Schneider (1966). 
It appeared that the additional terms are essential as well far downstream as in 
the stagnation region. Also they are necessary to avoid singularities in the solu- 
tion. The limiting process y + l  for strong blast waves has been studied by 
Freeman (1960) and Brocher (1960). Mirels (1962) considered the same limiting 
process for the steady hypersonic flow past slender bodies and drew analogous 
conclusions. 

It may be interesting that the uniformly valid solution (49) can be obtained 
somewhat more simply for a perfect gas than for a real gas. We proceed from the 
energy equation (4) and neglect v2 and vi according to (34) and (41). The enthalpy 
for a perfect gas with constant specific heats is 
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Expanding in powers of (y  - l)/y and using the assumption (14) we obtain 

( y  - l)/y is O(E*) according to (55) .  Thus the energy equation (4) reduces to (48), 
and (32) yields the result (49). 

6. Examples and discussion of the results 
Most frequently in the literature, the paraboloidal shock wave ( j  = 1, P2 = 22) 

in a stream of perfect gas (y = 1.4) at infinite Mach number has been treated. For 
this test problem, results of the present method are plotted in the figures 2-5. 
Comparisons are drawn with numerical results reported by Van Dyke & Gordon 
(1959) and Van Dyke (1966) for the subsonic and transonic region of the flow 

t 
4-- 

3 -- 

F. 

I’resent method 

O Characteristics method, Honda (1966) 

* 
1 2 3 4 5 6 7 8 

z 

1 I I 1 I I I 0.01 ! I I I I -  
0 1 2 3 4 5 6 7 8 

z 
FIGURE 2. Body shape and pressure at body surface for a paraboloidal shock wave (j = 1, 

8 2  = 25). 
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field, with the method of characteristics (Honda 1966) in the near supersonic re- 
gion, and with asymptotic solutions derived by Sychev (1960) and Yakura (1962) 
for regions far downstream of the body nose. The agreement with the numerical 
methods is quite good, although 2 is already relatively large in comparison with 
the assumption (13). (2 = (y  - l)/(y + 1) = &.) In  figure 2 theeffective layer thick- 
ness & defined by (17) is also given. This quantity and the density profile in 
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FIGURE 3. Body shape and pressure at  body surface for a paraboloidal shock wave (j = 1, 

$2 = 22). Perfect gas, y = 1.4, M ,  = a. Subsonic and transonio region. 
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FIGURE 4. Ratio of body radius to shock radius in sections normal to  a paraboloidal shock 
wave (j = 1, $2 = 2$). Perfect gas, y = 1.4, M ,  = co. Large diatance from the body nose. 
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figure 5 show clearly the concentration of the mass flow a t  the shock wave. Like- 
wise remarkable is the entropy profile, from which we may notice the entropy 
layer. However, a definite boundary between the entropy layer and the outer 
shock layer cannot be seen. In  figure 5 it occurs that the pressure distribution 
according to Yakura’s solution differs somewhat from the distribution calculated 

- P =  10 b 

1.0 
e 

0.8 

I 
rl 

0.4 

0.2 

Y 0.2 0.4 0.6 0.8 1.0 

FIGURE 5. Distribution of flow quantities on a normal to a paraboloidal shock wave 
j = 1, .f.Z = 2;. Perfect gas, y = 1.4, M ,  = m. __ , present method; - - - , Yakura 
(1962). 

by the present method. In order to test the two methods on their accuracy, we 
compare the pressure gradients normal to the shock surface. From the inclination 
and the curvature of the shock the following exact result valid for M, = co 
can be deduced: 

By using (49) ,  (53a) ,  (53b)  and (10) we obtain 

according to the present theory. For the example of a paraboloidal shock wave 
and y = 1.4 we draw from Yakura’s (1962, figure 14) paper it value of about - 3-6 
as pressure gradient at 2 = 10. We compare this value with the results obtained 
from (60)  and (61):  

= -1.60 (exact); 
= - 1.50 (present method); 
z -3.6 (Yakura 1962). 
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FIGURE 6. Distribution of flow quantities on two normals to a spherical shock wave. 
Perfect gas, y = 1-2, M ,  = 10. The central half angle is equal to 5’ and 32’ respectively. 
-, present method; - - -, Zlotnick bt Newman (see Hayes & Probstein 1966) ; - - -, 
Freeman (1956). 
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FIUURE 7. Body shape and pressure at body surface for a paraboloidal shock wave ( j  = 1, 
Pa = 22). Ideal dissociating gas, WLIRTd = 2, p,/pd = TWITd = 5 x 10-8 ( M ,  = 
17-32). Perfect gas, y = 1.4, M ,  = 17.32. 
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Hence we see that in this test case the results of the present method are more 
accurate than those of Yakura's method. 

For the neighbourhood of the stagnation point, results of the present method 
are compared in figure 6 with results numerically evaluated by Zlotnick & New- 
man (see Hayes & Probstein 1966, p. 460). 

z 

FIGURE 8. Body shape for a paraboloidal shock wave (j = 1, P = 22"). Ideal dissociating 
gas, w'&/RTd = 2, p w / p d  = lo-', TWIT, = 5 X ( M ,  = 17.32). Perfect gas, y = 1.4, 
M ,  = 17.32. Subsonic and transonic region. 

Results for a paraboloidal shock wave in a stream of a dissociating diatomic 
gas are plotted in the figures 7-9. The state equations of the ideal dissociating 
gas in thermodynamic equilibrium (Lighthill 1957) have been used. The constants 
T, and pa are a characteristic temperature and a characteristic density, respec- 
tively, of the gas. R is the gas constant per unit mass for the undissociated (mo- 
lecular) gas, a the degree of dissociation. The square of the free-stream velocity 
has been related to RT,, which is the dissociation energy per unit mass. There- 
fore W2,/RTd = 1 means that the kinetic energy of the gas in the free stream is 
large enough to provide half the energy required to dissociate the gas completely. 
(Values for oxygen: T, = 59,370 O K ,  pa = 150 g/cm3, RT, = 1-53 x loll cm2/sec2; 
nitrogen: T, = 113,260 OK, pa = 130 g/cm3, RT, = 3-35 x 101l cm2/sec2.) The 
free-stream density pm used in the example corresponds to an altitude of about 
70 km. 

Figure 8 and the upper half of figure 7 show that the thickness of the shock 
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layer is considerably smaller for the dissociating gas than for the perfect gas with 
constant specific heats. However, the differences in the pressures on the body sur- 
faces are rather small, as may be seen in the lower half of figure 7. It is interesting 
that the degree of dissociation on the body surface, denoted by a,, varies only 
slightly, although the pressure falls simultaneously to a small fraction of its value 
at the nose. This is due t o  the small temperature change conditioned by the fact 
that the effective isentropic exponent ye is nearly 1.  In  figure 9 the distributions 

0 0 2  04 0.6 0.8 1.0 

FIGURE 9. Distribution of flow quantities on three normals to a paraboloidal shock wave 
(j = 1, P2 = 2;). Ideal dissociating gas, W2,/RTa = 2, pa/pd = 10-9, Ta/Ta = 5 x  
(Ma = 17-32). 

of p ,  p, u and a on normals to the shock surface are plotted. The normal P = 0.1 
is located near the stagnation point, P = 2 is located in the near supersonic region 
of the flow field, and the normal P = 4.47 (2 = 10) represents the flow in rather 
large distance from the body nose. 

The author is indebted to Prof. K. Oswatitsch and Mrs A. Frohn for critically 
readifig the manuscript and valuable discussions, and to Mr L. Leopold for pro- 
gramming the computations on the ZUSE Z22R. 
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